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Medicinal Chemistry has a very long and successfuly history
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5 H. Beck, M. Harter, B. Hal3, C. Schmeck, L. Baerfacker, Drug Discov. Today 2022, 27, 1560-1574.



Medicinal Chemistry has a huge influence on society
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The different Stages of a Drug Discovery & Development
Program
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Contributions from Chemical Biology Approaches




Current Challenges in Drug Discovery

Herding in the drug development pipeline Translational failure in clinical phases

Nat. Rev. Drug Disc 2023 R. K. Harrison, Nat. Rev. Drug Discov. 2016, 15, 817.
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The number of targets has grown just 3.4% per year.  76% of clinical programs fail due to efficacy or safety.

Current Bottlenecks to increase R&D productivity:

Access to robust and cost effective tools towards...

/" novel targets /- choosing right targeting modalities

/- clear understanding of target to disease link  / better understanding of on/off-target activity and
mode of action



There is a high need to expand the druggable space

Interactome

Proteome

A. L. Hopkins, C. R. Groom, Nat. Rev. Drug Discov. 2002, 1, 727.



Intro Quiz Questions

How many Genes are present in the human

genome?
a) 140.000 b) 20.435
c) 49.131 d) still unclear
2) How many proteins are expressed in human
: cells?
a) 42.320 b) 192.917
c) 1.000000 d) 20.359

3.) How many proteins are currently druggable?

a) 4479 b) >667

C) 2282 d) not enou g h TTD: Therapeutic Target Database (idrblab.net)

Aebersold, R., Agar, J., Amster, I. et al., Nat Chem Biol 14, 206—214 (2018)



https://db.idrblab.net/ttd/
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/- Number of drug targets of approved drugs: >667

/- Number of disease relevant proteins: 2000 - 3000

/- Number of druggable proteins: 4479 _
Difhcult to drug

4 as protein —
' druggable
as mRNA?

/- Size of the humane transcriptome: > 200.000 transcribed RNAs,
covering about 70% of the human genome

Druggable
non-coding
RNAs?

Human protein 667 549 146 1,194 999 195
184 T 220 215 %

Other human biomolecules 28 9 22 98 63 35
i 4 i 71 a8

Human genome

Hopkins & Groom, Nature Reviews Drug Discovery 1 (2002) 727—-730; Overington et al., Nature Reviews Drug Discovery 1 (2006) 993-996; Dixon & Stockwell, Curr Opin Chem Biol 13 (2009) 549-555
Santos et al., Nature Reviews Drug Discovery 16 (2017) 19-34 ; Warner et al., Nature Reviews Drug Discovery 17 (2018) 547-558



The Big Pharma R&D Dilemma:

Pharmaceutical industry 2005-2009
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\__/ achieve one approval

The'big pharma’ dilemma: develop new drugs or
promote existing ones?

La 20
The High Price Of Failed Clinical Trials: Time To Rethink
The Model

By Ralf Huss, MD, Chief Medical Officer,
Definiens

Guest Column | October 3, 2016

Back in 2014, a study in Nature Biotech showed
that only 32% of drugs have a probability of
making it to Phase 3 trials, and only one in 10
drugs overall actually makes it to market. Things
haven’t improved since then.

BIO recently put out a study reporting that the

average overall likelihood of approval (LOA) by -

FDA from Phase I was 9.6 percent — a 1in 10

chance. The rate is even lower for major disease areas like oncology. Phase II clinical programs continue
to experience low success rates as well, with only 30.7 percent of candidates advancing to Phase IT1, a
slightly worse rate than it was a few years ago.

The cost of failed clinical trials is high, and the industry needs to focus on ways to reduce the

Weiss, D., Naik, P. & Weiss, R. Nat Rev Drug Discov 8, 533-534 (2009)

Bunnage et al. Nature Chemical Biology 2011, 7, 335



Is there a new way to increase pharma
R&D productivity?




Chemical Biology provides a modern and diverse toolbox
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M. Bucci, C. Goodman, T. L. Sheppard, Nat. Chem. Biol. 2010, 6, 847-854.



Chemical Biology in Pharma Research — A new way to increase
success rates
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Derek Lowe’s commentary on drug discovery and the pharma industry. An editorially
independent blog from the publishers of Science Translational Medicine. All content is
Derek's own, and he does not in any way speak for his employer.

By Derek Lowe
v = B

Chemical Biology — The Future?

By Derek Lowe | 23 September, 2010



Chemical Biology is currently an important topic in the
Pharmaceutical Industry
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CB Culture: High-profile
CB-Scientist as Boss

Former President of the Novartis
Institutes for BioMedical Research
(NIBR), Head of research @ Amgen

Chemical Biology at NIBR

Our Approach to Early Research and Discovery
We organize our early discovery efforts around a scientific discipline

called chemical biology, whicl"lcombines bioclogy, chemistryland

computer science.l
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¢ Strong link between target and disease
¢ Differentiated efficacy
» Available and predictive biomarkers

target as epicenter
@ 5 R Strategy

MERCK

IMVEWTING FOR LIFE

Merck & Co. Opens Cambridge Exploratory Science
Center, Plans to Hire 30 More Employees

Education Minimum Requirement

® PhD in Chemistry and a minimum of 7 years of experience in chemical biology /medicinalisynthetic chemistry

Required Experience and Skills:

® Prior experience in chemical biclogy

® Chemical Biclogy and drug discovery knowledge and experience

Thursday - August 5, 2021 @
Bayer strengthens drug discovery
platform through acqguisition of

Vividion Therapeutics i Df ON

Therapeutics

P. Morgan et al., Nat. Rev. Drug Discov. 2018, 17, 167-181.




How can Chemical Biology be defined?




The Historical Roots of Chemical Biology

THE BIRTH OF CHEMICAL BIOLOGY.

The Harveian Ovration delivered before the Royal College of
Physicians of London on Oct. 18th, 1930,

By J. B, Learues, M.B. Oxr.,, F.R.8.,

FELLOW OF THE COLLEGE; FROFESS0R OF PHYSIOLOGY IN THE
UNIVERSITY OF SHEFFIELL.

at the birth of biological chemistry, a science to whiel
chemistry owes as much ag biology, and without
which chemistry would have but three legs to stand
on, If the ideag in his work did not all originate

: o=
DNA R\lA Proteins )
¢(j:'5d3 Chemical

Small molecules biclogy
Cognition, signaling, life’s origins, probes, drugs

Small molecules: the missing link in the central dogma

15
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J. B. Leathes, The Lancet 1930, 216, 889-895.

Schreiber, S. Nat Chem Biol 1, 64-66 (2005)



A Personal Definition:
Design of Synthetic Probes &
Technological Tools to Identify & Study
Novel Druggable Mode of Actions




Chemical Biology: An Interdisciplinary Research Approach
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Chemical Biology Questions — What can you do with the toolbox???

Target
Localisation
unknown

Unexpected
in vitro =
in vivo
disconnect

Targeted
delivery
possible?

Target not
understood

Chemical
Biology

Which
selectivity
profile is
needed?

Target
unknown

Toxicology
findings
unclear

Coverage
of the
diesease
state?

Different
strategy for
lead finding

available?

Other ways
to adress
the target?




One application for Chemical Biology
tools: Target Identification

What makes a good drug target?




Criteria for a good drug target are complex and connected

Disease with high unmet medical need

Identification of a molecular drug target

20
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I. Gashaw, P. Ellinghaus, A. Sommer, K. Asadullah, Drug Discovery Today,16, 23-24, 2011,1037-1043.
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The option space for target identification is increasing:

There are multiple sources to identify a drug target: The Drug target space expansion depends on:
Disease . Over-expression,
association: ) transgenics,
genetics and RNAI, antisense
expression data : RNA
Expression A
profile: tagman, Comparative

IHC, western genetics

biotting \ / |
Molecular
Utzr:;umr:;un:)vrey —_— Target id and —— pharmacology of
information validation variants

& bioactive

/ \ Analysis of
Tool compounds / \ e

sign alling
molecules D
Cell-basedandin , Interactions:
vivo disease ‘ immunoprecip;
models N yeast 2 hybrid

Hughes, J., Rees, S., Kalindjian, S. and Philpott, K. (2011), British Journal of Pharmacology, 1239-1249.
21 I. Gashaw, P. Ellinghaus, A. Sommer, K. Asadullah, Drug Discovery Today,16, 23-24, 2011,1037-1043.



How good is the academic literature as a source for drug

targets?

(o 3 (4%) 43 (65%)

5(7%)

14 (21%)

2 (3%)

B Inconsistencies

B Not applicable

[] Literature data are in line with in-house data
B Main data set was reproducible

B Some results were reproducible

Bayer study:

67 projects investigated (70% from oncology)
In 2/3 of the investigated projects inconsistencies between
published and in-house data

Amgen study:
Data from 53 landmark papers reproduced internally
Scientific findings were confirmed in 11% of cases

Many industrial drug discovery projects start from literature reports on new targets
A lack of reproducibility of published data causes severe problems

22

F. Prinz et al. Nat. Rev. Drug Disc. 2011, 10, 712. C. G. Begley et al. Nature 2012, 483, 531.
M. Baker & D. Penny Nature 2016, 454, 452. William G. Kaelin Nat. Rev. Canc. 2017, 17, 425.



Many academic authors are also ignoring target validation work

from industry

Integrated Genomic Analysis of the 8q24 Ampilification in
Endometrial Cancers Identifies ATAD2 as Essential to MYC-
Dependent Cancers

Maria B. Raeder [E], Even Birkeland, Jone Trovik, Camilla Krakstad, Shyemaa Shehata, Steven Schumacher, Travis |. Zack,

Antje Krohn, Henrica MJ. Werner, Susan E. Moody, Elisabeth Wik, Ingunn M. Stefansson, Frederik Holst, [ ... ],
Helga B. Salvesen B3

[view all ]

Published: February 5] 2013 o https://doi.org/10.1371/journal pone 0054873
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BAY-850

ATAD?2 is a driver and a therapeutic target in ovarian
cancer that functions by upregulating CENPE

Praveen Guruvaiah, Suresh Chava, Chiao-Wang Sun, Mirupama Singh, Courtney A. Penn & Romi G|.|:t_aE

Cell Death & Disease 14, Article number: 454 (2023) | Cite this article

1118 Accesses | 1 Citations | 6 Altmetric | Metrics

X active on the nontransformed and cancer cells (Figure4E). Thus, we concluded that the

\
= \* L‘ Tt cytotoxic effects displayed by BAY-850 cannot be unmistakably linked to ATAD2 BD

inhibition. Further evidence for a disconnect between the observed growth inhibition and
the inhibition of ATAD2 BD was provided by gene expression studies, in which BAY-850
treatment did not affect the expression of some of the previously identified ATAD2 target
genestt2 (Supporting Information Figure 7). Consistently, other recently published ATAD2
BD inhibitors also failed to demonstrate significant effects on target gene expression and
cancer cell survival below 20 uM despite engaging ATAD2 BD in living cells.2 Potential

impaired
chromatin
association

ACS Chem. Biol. 2017, 12, 11, 2730-2736.



Are there modern ways to find drug
targets?




Modern Chemical Biology tools offer a flexible for Target

Discovery
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Pun, Frank W. et al. Trends in Pharmacological Sciences, 44, 561 — 572.



Al might play an important role to deal with the complexity of
PhenOMICs data

1991
i )-’ @
- Protein identification & \\(

by photoaffinity labeling .~ 2014
1994 Original GAN; 2017
; DL-based quantitative DL-based
:;st?‘?;?ngt ﬂTrggamycin\ structure-activity (QSAR) disease-driven TID
2004 2006 2020 i,
High-throughput - Structural similarity DL-based TID f:t@—,’!,;
target docking assessment for COVID-19 5
@@ @rlprng ® ® ® o ®
{ 2005 l 2012
Appcaion CRISPR-Cas9
2 .
2002 2004 LD chemisty | Al-derived TID
SILAC Identification of EGFR 2022
mutations in NSCLC 2008
. « Entry of a Al-designed drug into clinical trial
AGC chemistry + Al-derived novel targets for ALS treatment
2003 2023
Human Genome Project completed + Integration of advanced Al chat functionality

- TID with pharmacophore screening

with Knowledge Graph
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Workflow of artificial intelligence (Al)-driven target discovery

Omic data models

Genomics

«©

Transcriptomics
Proteomics

Epigenomics
Metabolomics

Signaling pathways
Molecular interactions
Protein-protein interaction

Text Data =
Grants ==
Patents
Publications ﬂ
Clinical trials Oo
Financial reports (=]

Pun, Frank W. et al. Trends in Pharmacological Sciences, 44, 561 — 572.

Target selection criteria

Disease causality ¢ — =
Development status oall

Clinical trial phase
Ligand/compound availability

Druggability
Druggable classes
Protein localization
Therapeutic modality
Awailability of protein structure

Toxicity

Gene essentiality
Tissue specificity
Cellular process involved

Novelty

Target @
identification




Overview PhenOMICs tools - Use case example Proteomics

»2Analysis of genetic, disease associated and/or modality mediated effects on relevant biological systems
with image-based, functional genomics, sequencing and mass spectrometric methods”

Environmental Factors

/ Investigation Tool

Morphodynamic using
—r 4 Time Lapse Microscopy

GC-MS, Western biott,
Chem/Bio-sensors, ...

GC-MS, HPLC,
Western blott, etc..

Feedback

—_— m Rna-Seq microArray

o %a N S _— - DNA microArray
.MWCS

D’Orazio, M., Murdocca, M., Mencattini, A. et al. Sci Rep 12, 8545 (2022).



PhenOMICs Tools — Overview Proteomics

Data representation: Vulcano-Plot
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Proteomics workflows and their technological improvements
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2 Meissner, F., Nat Rev Drug Discov 21, 637-654 (2022).



Chemoproteomics — A short overview

/I (Chemo-)Proteomics allows the qualitative and quantitative analysis of protein expression patterns in large scale by
mass spectrometry (before and after chemical modulation)

/[ Significant technological improvements in the last decade - analysis and quantification of >8000 proteins
possible with reduced sample amounts and measurements times

I/l Fast evolving field - chemoproteomics, tissue proteomics, single cell proteomics, phosphoproteomics

... as broad applicable target " é 2 ;Q | ... to analyse healthy vs.

R
validation tool (complementary /é ; {} | ' disease state, e.g. quality check
to genomics data) A LT — for disease hypothesis/models

VIUVUVUV IS ney
8356508 7"

... to support phenotypic screens by
identifying novel targets & protein-
e protein interaction networks

Temperature

by e

F}T

... for a better characterization of
Proteomics assets, e.g. off-targets, biomarkers ...

Protein fraction
00 05 1.0

1

... to prove target engagement, e.g. by \/‘/ W ... to screen for novel lead structures

measuring protein degradation levels : \ for currently undruggable targets
of PROTACs M

%3 20 40 60
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Proteomics tools are the currently most impactful tool in the
Chemical Biology field

Proteomics applications in the preclinical Proteomics enables characterization

drug discovery process of the complex human proteome

9 89 65 &)
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& & &
55
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Target - - Efficacy ENEP & 1 &
identification Activity Stability &) & &
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. Genome Transcriptome Proteome
20-25,000 genes  -------sosmemmononnannn »: ©=100,000 franscrpts; =====-====ssce=c==ad > >1,000,000 proteins
Afh nity Folding Alternative promoters Post-translational
Alternative splicing modifications
MRNA editing

*® 3

@~ p
~ %
Abundance Modification Phenotype

ks

Localization Interaction

Current Limitations:
Throughput due to
complexity

Mechanismfcef‘““c

Target discovery
and validation

Meissner, F., Nat Rev Drug Discov 21, 637-654 (2022).




Overview: Chemoproteomics Use Cases in Drug Discovery

Affinity and Activity
Methods

Stability and Folding
Methods
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CCCP = Compound-Centric Chemical Proteomics
ABPP = Affinitiy/Activity based Protein Profiling
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TPP = Thermal Proteome Profiling
LIP-MS = Limited Proteolysis coupled to Mass spectrometry
DARTS = Drug affinity responsive targets stability

Meissner, F., Nat Rev Drug Discov 21, 637-654 (2022).




Overview: Chemoproteomics Use Cases in Drug Discovery

Expression and Modification
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AP-MS = Affinity Purification Mass Spectroscopy

Meissner, F., Nat Rev Drug Discov 21, 637-654 (2022).




Currently largest study: A proteome-wide fingerprinting atlas of
drug mechanism of action

Example: DHFR expression modulators
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Mitchell DC, Nat. Biotechnol. 2023, 41, 845-857.
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Examples for advanced Chemoproteomics tools: Target engagement and
deconvolution by Cellular Thermal Shift Assays (CETSA)

Wide range of sample

types (cells, tissue, validation

¢

Label free Target/ Off target

identification

Target
deconvolution

engagement in
cells

App|y 37 40 43 46 49 52 55 58 64 67 70

i 61
Vehicle heat Temperature

Basic Principle : Heating of cells with subsequent quantification of the presence of target protein
in the soluble fraction by a broad variety of detection methods (e.g. Western Blot or Mass spectrometry)

Daniel Martinez Molina, Science 341, 84-87 (2013).

- A.Jensen, Future Medicinal Chemistry 2015, 7, 975-978.
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I/l The difference in thermal stability can be used to monitor protein-drug interactions across the whole proteome
in living cells or lysates enabling target engagement in an unbiased way
/I CETSA MS allows the identification of markers for drug efficacy and toxicity as well as
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Chemoproteomlcs based screens — Basic Principle
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Chemoproteomics Example — The KinoBead Technology

Examples for the Pan-Kinase Inhibitors
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M. Bantscheff et al., Nat. Biotechnol. 2007, 25, 1035-1044.
G. Médard et al., J. Proteome Res. 2015, 14, 1574-1586.
S. Klaeger et al., Science 2017, 358, 4368.



Proteomics based interactome analysis: Bioplex database

Immunoprecipitation setup: Bioplex database construction: Example: KRAS
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Are Identical Reflects Specialized Biology

S. P. Gygi et al. Cell 2021, 184, 3022-3040
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Unraveling Interactomes by Proximity Labeling

APEX BiolD TurbolID: Tool improvements via protein engineering

g— Directed evolution of TurbolD.
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Proximity Labeling needs a fusion of an APEX or Biotin ligase tag to the POI (Protein of interest)
and allows a Chemoproteomics analysis of the labeled proteins

Qin, W., Cho, K.F., Cavanagh, P.E. et al. Nat Methods 18, 133-143 (2021).
Branon, T., Bosch, J., Sanchez, A. et al. Nat Biotechnol 36, 880-887 (2018).



The Central Element for Chemical Biology:
development of the right Chemical
Probing concepts
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Overview: Chemical Biology Probe Chemistry

Photoreactive Probes
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Pulldown/Affinity Proteomics — Basic Principle

ij”% Q (a) linker
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Current Opinion in Chemical Biology

J. Lee, M. Bogyo, Curr. Opin. Chem. Biol. 2013, 17, 118-126.
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Example for classical Affinity Proteomics — Astra Zeneca CDK 9
program

The Affinity pulldown results is way broader than a Kinase profiling

Affinity proteomics B i
CDK17  GSK3A 1501
Short half-life transcripts/ 61 GeKip GSK3B CDK12 3
labile proteins, e.g. _ cDk1e % CPK10 Z
—_ [ [ - AFF4
Mcl-1 - Survival s CDK14 51 - con
o 4
MYC — Survival/growth - 4 cok11A E:d"IQ.“FF" oxd @ - CONT2
= eDKZ-COK11B JonT E = CDK9
g , p=0.01 thega “AFF1 2 0] s
1 S S | o -1 4 S S I S—— - e S i bt i e
X
ik ’
Biotin Attachment Il Limitation: only ° e Q@“ \«*“_p&”\@&" G
H\/g\/ﬂ Point for Pulldown appllcable for Iysates logFC _ Concentration
logFC Concentration
| _}m c Kinase Affinity Tools D .
H 2 150 o
o CDKL5 5
Compound 1 ©
i Z
Biochemical Paotency s ct.)ms .AF}?:: CDK9 g 100 —
Assay Q. 41 Ky ® e £ “*= GSK3A
B . .;..\._/CDKW CCNT2 g g
Km ATP <3nM = e SRPK1 £
g & ¥
5 mM ATP <3nM T 2]
o
Il SAR understanding for , P F
: . . S, & & & 3
Probe design is crucial - 3 3 O
logFC Concentration

44 J. A. Hendricks et al., ACS Chem. Biol. 2022, 17, 54-67.



Bioorthogonal and Click Chemistry — Basic principle
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and l react without interfering with native biochemical processes

4 additional molecular probe

Carolyn R. Bertozzi Morten Meldal K. Barry Sharpless
“for the development of click chemistry and “for the development of click chemistry and “for the development of click chemistry and
bioorthogonal chemistry” bioorthogonal chemistry” bioorthogonal chemistry”

Nobel Prize 2022

E. M. Sletten, C. R. Bertozzi, Angew. Chem. Int. Ed. 2009, 48, 6974-6998.
45 R. E. Bird, S. A. Lemmel, X. Yu, Q. A. Zhou, Bioconjugate Chemistry 2021, 32, 2457-2479.
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Bioorthogonal Chemistry — Overview about modern tools

Tetrazine-1ED D.-A.-reactions
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Application Example for Click Chemistry: Target Deconvolution

by Activity based Protein Profiling (ABPP)

B. F. Cravatt et al., Nat. Chem. Biol. 2014, 10, 760-767.
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The labeling efficiency of Activity based Protein Profiling
(ABPP) experiments can be improved by Photoaffinity tags
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Cellular Fragment-Based Screening by Photoaffinity based Protein
Profiling (ABPP)
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The Chemical Nature of the Probe has significant influence on the labeling
efficiency and biological outcome of a Photoaffinity labeling experiment
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Modern
Drug
Synthesis
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Overview PhenOMICs tools
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/ Investigation Tool
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PhenOMICs Tools IV — Overview Image based approaches

Definition:
Phenotypic Approach /I Characterization of compound induced effects on cellular phenotypes
; ] /[ Multiple readouts possible (Imaging, Omics, ELISA, Histology), however in most
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= The fundamental question: Is target-based drug discovery

® |

= efficient? A critical view on R&D productivity

Is Target-Based Drug Discovery Efficient? Discovery and “Off-Target” Mechanisms of All Drugs

Arash Sadn*

Even these
123 drugs are
indebted o
phenotypic
observations
as they have
numerous
therapeutic
mechanisms
independent of
their targets.”

e This is the first systematic and comprehensive assessment
of the real-world efficiency of target-based drug discovery.

e Merely 9.4% of approved small-molecule drugs have been
discovered by this approach.

e Even these supposedly target-based drugs depend on
numerous off-target mechanisms for their therapeutic
effects.

e Reductionist target-based drug discovery has thus far
been inefficient and maybe a cause of the productivity
Cnsis.

e Approaches that prioritize higher-level observations are
potentially more efficient based on both observational and

theoretical evidence,
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Many approved and successful drugs are hitting multiple
targets although they were optimized for one main target

[ | Non-human or ex Vivo Phenotypes

| Mechanism of Action-informed Phenotypes

Phenotypic Effects of Endogenous Molecules

Human Phenotypes
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Phenotypic drug discovery opens a different perspective to
assess the polypharmacological behaviour of small molecules

Movel Drug Discovery Disease Validation Safety Assessment
» Phenolypic assays as the primary screening assay  « Human cell-based disease models, iPSC-derived » Assays for specific toxicity mechanisms (e.g.
(PDD) assays, advanced complax syslams mitochandrial function, cell cylotaxicity)
» Ganetically modified assays (e.g. CRISPR-Casg) # Human primary cell-based disease modals » Organ-specific assays (e.g. cardiomyocyles,
» Moffat, 2017; Vincent, 2020; Haasen, 2017; Corrd, {Berg 2017) hepatocyles)
2020 = Organoids (Hou, 2018; Yang, 2020; Comrd, 2020) = Phenotypic profiling in human assay panels
# Organs-on-a-chip (Jain, 2018; Tang, 2020) . ﬁgﬁmﬂ 9: Muller, 2019, Ballmann, 2019;

Lead Optimization

Triage Hits for Undesirable Mechanisms Mechanism of Action

» Program-specific counterscreans (8.g. # Mechanism classification and target deconvolution
pathway-based assays) F'hmﬂty'pb:: prafiling using high content, prolein

= Ganeric countarscreens for specific pharmacology blomarkers or transcriptional profiles
(Human Biology Screening Funnel) # Call painting (Bray, 2016; Wardwell-Swansan,

= Vineent, 2020; Berg, 2020 2018)

» Connectivity Map (CMAP, Subramanian, 2017)
» Human primary oall assay panals (e.g. BioMAP®
Panels, Berg, 2017)

C. L. DElY, ell Chem Bio 2021, 28, 424-430



Phenotypic Drug Discovery — step by step

Step 1: Definition of the phenotypic signature

Physiology-associated pathways

Disease-associated pathways

Physiology E d I I ; Disease
signature ' ‘ signature

Disease-model-associated pathways

Step 2: Implementation of the phenotypic model
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model + Stimull : phenotype

Screening assay

Step 3: Screening and MoA Deconvolution

Clinical
Maolecular In vivo proof-of-
phenotype validation concept
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J. G. Moffat, F. Vincent, J. A. Lee, J. Eder, M. Prunotto, Nat. Rev. Drug Discov. 2017, 16, 531-543.



“ Cell Painting: A novel Imaging approach for cellular phenotyping

Cell Painting allows the fingerprinting of a huge variety of cellular changes after compound treatment
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Combination with Machine Learning and Al approaches gives access to a
novel phenotypic target and lead structure space

A. E. Carpenter et al., Nat. Protoc. 2016, 11, 1757-1774.



Advances in labeling techniques have huge influence on
@ phenotypic drug discovery: Example CODEX technology
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Outlook: The resolution becomes constantly better: Super-

o Resolution Microscopy
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Schermelleh, L., Ferrand, A., Huser, T. et al. Super-resolution microscopy

61 demystified. Nat Cell Biol 21, 72—-84 (2019).
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~  Chemogenomics Library

Typical construction workflow:

Use cases:

Chemogenomic library

Public and proprietary 9
clinical-drug databases == Identify and aggregate
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in vitro assays
Contribute
screening data

The basis of PhenOmics based drug discovery: A well annotated

»The best way to discover a new
drug is to start with an old one*
- James Black
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L. H. Jones, M. E. Bunnage, Nat. Rev. Drug Disc. 2017, 16, 285-296.
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